We deal with the problem of parameter estimation in stochastic differential equations (SDEs) in a partially observed framework. We aim to design a method working for both elliptic and hypoelliptic SDEs, the latters being characterized by degenerate diffusion coefficients. This feature often causes the failure of contrast estimators based on Euler Maruyama discretization scheme and dramatically impairs classic stochastic filtering methods used to reconstruct the unobserved states. All of theses issues make the estimation problem in hypoelliptic SDEs difficult to solve. To overcome this, we construct a well-defined cost function no matter the elliptic nature of the SDEs. We also bypass the filtering step by considering a control theory perspective. The unobserved states are estimated by solving deterministic optimal control problems using numerical methods which do not need strong assumptions on the diffusion coefficient conditioning. Numerical simulations made on different partially observed hypoelliptic SDEs reveal our method produces accurate estimate while dramatically reducing the computational price comparing to other methods.


翻译:我们在一个部分观察的框架中处理随机差分方程参数估计问题。 我们的目标是设计一种方法,既用于椭圆形SDE,又用于低电离子SDE,后者的特征是扩散系数下降。这个特征往往导致基于Euler Maruyama离散办法的对比估计器失败,并严重损害用于重建未观测状态的典型随机差分过滤方法。所有这些问题使得低电离子SDE的估算问题难以解决。为了克服这一点,我们构建了一种定义明确的成本函数,而SDE的椭圆形性质无关紧要。我们还绕过过滤步骤,考虑一种控制理论。未观测到的状态是通过使用不需对扩散系数条件进行强有力假设的数值方法解决确定性最佳控制问题来估计的。对不同部分观测到的低电离子SDE进行的数值模拟揭示了我们的方法产生了准确的估算,同时大大降低了与其他方法相比的计算价格。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员