This paper studies the asymptotic properties of and improved inference methods for kernel density estimation (KDE) for dyadic data. We first establish novel uniform convergence rates for dyadic KDE under general assumptions. As the existing analytic variance estimator is known to behave unreliably in finite samples, we propose a modified jackknife empirical likelihood procedure for inference. The proposed test statistic is self-normalised and no variance estimator is required. In addition, it is asymptotically pivotal regardless of presence of dyadic clustering. The results are extended to cover the practically relevant case of incomplete dyadic network data. Simulations show that this jackknife empirical likelihood-based inference procedure delivers precise coverage probabilities even under modest sample sizes and with incomplete dyadic data. Finally, we illustrate the method by studying airport congestion.


翻译:本文研究dyadic 数据内核密度估计(KDE)的无症状特性和改良的推断方法。 我们首先在一般假设下为dyadic KDE 设定了新颖的统一合并率。 由于已知现有的分析差异估计器在有限样本中行为不可靠,我们建议修改一个粗便实验概率程序作为推断。 拟议的测试统计数据是自我标准化的,不需要差异估计器。 此外,无论存在 dyadic 群集,它也是同样关键的。 其结果扩大到涵盖不完全的dyadic 网络数据这一实际相关的案例。 模拟表明,这种以实验性概率为基础的概率推断程序提供了精确的覆盖概率, 即使样本大小不大,而且数据不完整。 最后,我们通过研究机场拥挤情况来说明这种方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月7日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Learning to Importance Sample in Primary Sample Space
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员