Building a complete inertial navigation system using the limited quality data provided by current smartphones has been regarded challenging, if not impossible. We present a probabilistic approach for orientation and use-case free inertial odometry, which is based on double-integrating rotated accelerations. Our approach uses a probabilistic approach in fusing the noisy sensor data and learning the model parameters online. It is able to track the phone position, velocity, and pose in real-time and in a computationally lightweight fashion. The information fusion is completed with altitude correction from barometric pressure readings (if available), zero-velocity updates (if the phone remains stationary), and pseudo-updates limiting the momentary speed. We demonstrate our approach using a standard iPad and iPhone in several indoor dead-reckoning applications and in a measurement tool setup.
翻译:使用当前智能手机提供的有限质量数据建立一个完整的惯性导航系统,即使不是不可能,也被认为是具有挑战性。我们提出了定向和使用空格自由惯性测量的概率方法,其基础是双集成旋转加速度。我们的方法在将噪音传感器数据引信并在线学习模型参数时采用了一种概率方法。它能够实时跟踪电话位置、速度,并呈现出实时和计算体重轻的状态。信息集聚完成后,通过baroricat压力读数(如果有的话)、零速度更新(如果手机仍然固定不变)和假更新限制时速的高度校正(如果手机保持静止)和假更新来完成。我们用标准iPad和iPhone的方法在若干室内死回击应用和测量工具设置中演示了我们的方法。