项目名称: 海量、动态、嘈杂语义数据集上的递增随时推理方法研究
项目编号: No.61202186
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 计算机科学学科
项目作者: 方俊
作者单位: 西北工业大学
项目金额: 25万元
中文摘要: 本项目提出海量、动态和嘈杂语义数据集上的递增随时推理方法。立项依据是:1、传统推理方法追求完整解,并假设数据的稳定性和一致性,无法处理具有上述特征的语义数据集;2、在前期研究中,1)我们已经初步建立了嘈杂语义数据的处理方法,且实验表明推理结果的质量提高了约一倍(该工作为欧盟最大的语义网项目LarKC中城市计算子项目,结果发表在语义网领域顶级国际会议ISWC2011)。2)提出了消解相关性函数优化推理性能的方法(工作已申请三项PCT国际专利,发表一篇国际杂志文章)。3)提出了使用搜索结果计算一般语义距离的方法(工作已申请一项国内专利,发表一篇国际会议文章)。这些研究结果初步验证了递增随时推理方法的可行性。本项目计划进一步扩展研究工作,完成三个核心任务:1、设计消解相关函数来递增选择最重要的数据进行推理;2、使用消解相关树动态更新解的有效性;3、使用一般语义距离保证嘈杂语义数据推理中解的合理性
中文关键词: 海量语义数据;动态语义数据;嘈杂语义数据;递增随时推理;消解相关
英文摘要: This project proposes an incrementally anytime reasoning method in large-scale, dynamical and noisy semantic data set. The motivation is that, firstly, traditional reasoning methods want to get complete results, and assume that the semantic data set is stable and clear, thus it can not be used in the semantic data set with the above mentioned characteristics. Secondly, we have already carried out three research work which can support the project. First, we have established the initial processing method for noisy semantic data, experimental results show that the quality of reasoning results have been increased about 100%. This work is the Urban Computing sub-project in the LarKC, which is the biggest Semantic Web project supported by European Commission. Second, we proposed a reasoning optimization method based on resolvable relevant function. This work have applied three PCT international patents, and been published in an international journal paper. Third, we introduce a general semantic distance calculation method based on search results. This work have applied one Chinese patent and been published in an international conference paper. We plan to extend our previous work in this project, achieve three goals: Firstly, to use resolvable relevant function to incrementally calculate the most important results. Sec
英文关键词: large-scale semantic data;dynamical semantic data;noisy semantic data;incrementally anytime reasoning;resolvable relevance