This paper presents a deep learning approach for image retrieval and pattern spotting in digital collections of historical documents. First, a region proposal algorithm detects object candidates in the document page images. Next, deep learning models are used for feature extraction, considering two distinct variants, which provide either real-valued or binary code representations. Finally, candidate images are ranked by computing the feature similarity with a given input query. A robust experimental protocol evaluates the proposed approach considering each representation scheme (real-valued and binary code) on the DocExplore image database. The experimental results show that the proposed deep models compare favorably to the state-of-the-art image retrieval approaches for images of historical documents, outperforming other deep models by 2.56 percentage points using the same techniques for pattern spotting. Besides, the proposed approach also reduces the search time by up to 200x and the storage cost up to 6,000x when compared to related works based on real-valued representations.
翻译:本文介绍了在历史文件的数字化收藏中进行图像检索和图案定位的深层次学习方法。 首先,一个区域建议算法在文档页面图像中检测对象。 其次,深层次学习模型用于地貌提取,考虑两种不同的变体,这些变体提供实际价值或二进制代码表示法。最后,候选图像通过计算特征与特定输入查询的相似性排列等级。一个强有力的实验协议评估了考虑到DocExplore图像数据库中每个代表方案(价值和二进制代码)的拟议方法。实验结果显示,提议的深层模型与历史文件图像的最新图像检索方法相比,优于历史文件的最新图像检索方法,比其他深层次模型高出2.56个百分点,使用相同的模式定位方法。此外,拟议方法还将搜索时间减少至200x,与基于实际价值表示法的相关工程相比,存储成本也高达6 000x。