Reinforcement learning is well-studied under discrete actions. Integer actions setting is popular in the industry yet still challenging due to its high dimensionality. To this end, we study reinforcement learning under integer actions by incorporating the Soft Actor-Critic (SAC) algorithm with an integer reparameterization. Our key observation for integer actions is that their discrete structure can be simplified using their comparability property. Hence, the proposed integer reparameterization does not need one-hot encoding and is of low dimensionality. Experiments show that the proposed SAC under integer actions is as good as the continuous action version on robot control tasks and outperforms Proximal Policy Optimization on power distribution systems control tasks.


翻译:强化学习是在离散动作下进行的研究。 整数动作设置在行业中很受欢迎, 但由于其高维度, 仍然具有挑战性。 为此, 我们研究在整数动作下进行强化学习, 将软Acor- Critic( SAC) 算法与整数再校准法结合。 我们对整数动作的关键观察是, 它们的离散结构可以使用其可比性属性进行简化。 因此, 拟议的整数重新计量不需要一热编码, 并且是低维度的。 实验显示, 拟议的SAC 整数下动作与机器人控制任务的持续操作版本和超效的配电系统控制任务Proximal政策优化相同。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最前沿:深度解读Soft Actor-Critic 算法
极市平台
53+阅读 · 2019年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Shape Programmable Magnetic Pixel Soft Robot
Arxiv
0+阅读 · 2021年11月5日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
最前沿:深度解读Soft Actor-Critic 算法
极市平台
53+阅读 · 2019年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员