We give a complete solution to an open problem of Thomas Cover in 1987 about the capacity of a relay channel in the general discrete memoryless setting without any additional assumptions. The key step in our approach is to lower bound a certain soft-max of a stochastic process by convex geometry methods, which is based on two ideas: First, the soft-max is lower bounded in terms of the supremum of another process, by approximating a convex set with a polytope with bounded number of vertices. Second, using a result of Pajor, the supremum of the process is lower bounded in terms of packing numbers by means of mixed-volume inequalities (Minkowski's first inequality).
翻译:1987年托马斯·盖伊(Thomas Cover)的一个公开问题,即没有附加的假设,在一般离散的无记忆环境中中,中继频道的容量问题,我们给出了一个完整的解决方案。我们方法的关键步骤是通过二次测距方法,降低某种软式随机过程的尺寸。 这种方法基于两个想法:第一,软式轴在另一个过程的精度方面受约束程度较低,其方法是近似于一个带有多层脊椎的多管的螺旋管。 其次,利用Pajor的结果,该过程的顶部在混合量不平等(Minkowski的第一次不平等)的包装数量方面受约束程度较低。