Recent years have seen an increased interest in establishing association between faces and voices of celebrities leveraging audio-visual information from YouTube. Prior works adopt metric learning methods to learn an embedding space that is amenable for associated matching and verification tasks. Albeit showing some progress, such formulations are, however, restrictive due to dependency on distance-dependent margin parameter, poor run-time training complexity, and reliance on carefully crafted negative mining procedures. In this work, we hypothesize that an enriched representation coupled with an effective yet efficient supervision is important towards realizing a discriminative joint embedding space for face-voice association tasks. To this end, we propose a light-weight, plug-and-play mechanism that exploits the complementary cues in both modalities to form enriched fused embeddings and clusters them based on their identity labels via orthogonality constraints. We coin our proposed mechanism as fusion and orthogonal projection (FOP) and instantiate in a two-stream network. The overall resulting framework is evaluated on VoxCeleb1 and MAV-Celeb datasets with a multitude of tasks, including cross-modal verification and matching. Results reveal that our method performs favourably against the current state-of-the-art methods and our proposed formulation of supervision is more effective and efficient than the ones employed by the contemporary methods. In addition, we leverage cross-modal verification and matching tasks to analyze the impact of multiple languages on face-voice association. Code is available: \url{https://github.com/msaadsaeed/FOP}


翻译:近些年来,人们对利用YouTube的视听信息在名人的脸和声音之间建立联系的兴趣日益浓厚; 先前的工作采用衡量学习方法,学习一个可以用于相关匹配和核查任务的嵌入空间; 然而,尽管取得了一些进展,但这种配方由于依赖远距离依赖边距参数、运行时间培训复杂程度低以及依赖精心设计的负面采矿程序而受到限制; 在这项工作中,我们假设,一个更丰富的代表,加上有效而高效的监督,对于实现一个歧视性的联合嵌入空间以完成面音协会任务非常重要; 为此,我们提议了一个轻量、插接接和游戏机制,利用这两种模式中的互补提示,形成更精密的嵌入空间,并基于其身份标签,通过正方形限制进行分组; 我们将我们提议的机制设定为熔化和正形预测(FOP),并在二流网络中进行即时空。 由此产生的总体框架在VoxCeleb1 和MAVAV-Celeb数据集中进行了评估, 包括跨式版本校正校验和匹配。 结果显示,我们采用的方法比当前多式核查和匹配的方法更有利于。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
18+阅读 · 2021年6月10日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员