We study the Euler scheme for scalar non-autonomous stochastic differential equations, whose diffusion coefficient is not globally Lipschitz but a fractional power of a globally Lipschitz function. We analyse the strong error and establish a criterion, which relates the convergence order of the Euler scheme to an inverse moment condition for the diffusion coefficient. Our result in particular applies to Cox-Ingersoll-Ross-, Chan-Karolyi-Longstaff-Sanders- or Wright-Fisher-type stochastic differential equations and thus provides a unifying framework.
翻译:暂无翻译