Incorporating probabilistic terms in mathematical models is crucial for capturing and quantifying uncertainties in real-world systems. Indeed, randomness can have a significant impact on the behavior of the problem's solution, and a deeper analysis is needed to obtain more realistic and informative results. On the other hand, the investigation of stochastic models may require great computational resources due to the importance of generating numerous realizations of the system to have meaningful statistics. This makes the development of complexity reduction techniques, such as surrogate models, essential for enabling efficient and scalable simulations. In this work, we exploit polynomial chaos (PC) expansion to study the accuracy of surrogate representations for a bifurcating phenomena in fluid dynamics, namely the Coanda effect, where the stochastic setting gives a different perspective on the non-uniqueness of the solution. Then, its inclusion in the finite element setting is described, arriving to the formulation of the enhanced Spectral Stochastic Finite Element Method (SSFEM). Moreover, we investigate the connections between the deterministic bifurcation diagram and the PC polynomials, underlying their capability in reconstructing the whole solution manifold.
翻译:暂无翻译