In this article, we propose a generalized weighted version of the well-known Benjamini-Hochberg (BH) procedure. The rigorous weighting scheme used by our method enables it to encode structural information from simultaneous multi-way classification as well as hierarchical partitioning of hypotheses into groups, with provisions to accommodate overlapping groups. The method is proven to control the False Discovery Rate (FDR) when the p-values involved are Positively Regression Dependent on the Subset (PRDS) of null p-values. A data-adaptive version of the method is proposed. Simulations show that our proposed methods control FDR at desired level and are more powerful than existing comparable multiple testing procedures, when the p-values are independent or satisfy certain dependence conditions. We apply this data-adaptive method to analyze a neuro-imaging dataset and understand the impact of alcoholism on human brain. Neuro-imaging data typically have complex classification structure, which have not been fully utilized in subsequent inference by previously proposed multiple testing procedures. With a flexible weighting scheme, our method is poised to extract more information from the data and use it to perform a more informed and efficient test of the hypotheses.
翻译:在本篇文章中,我们提出了一个众所周知的Benjami-Hochberg(BH)程序的普遍加权版。我们所用方法的严格加权制使我们能够将结构信息从同时的多路分类以及假设的等级分化成组进行编码,并有容纳重叠组别的规定。当所涉的p值为正反向后退时,该方法被证明控制假发现率(FDR),该方法依赖于无效的p-value的子集(PRDS)。提出了该方法的数据适应性版本。模拟表明,我们所提议的方法在理想水平上控制了FDR,并且比现有的可比的多重测试程序更强大,因为p-value值是独立的或符合某些依赖性条件的。我们采用这一数据适应性方法来分析神经成像数据集并了解酒精中毒对人类大脑的影响。神经成形数据通常具有复杂的分类结构,在随后提议的多重测试程序中没有得到充分利用。由于采用了一种灵活的加权方法,因此,我们的方法可以从数据中提取更多的知情信息,并进行更高效的测试。