This paper is concerned with the recovery of (approximate) solutions to parabolic problems from incomplete and possibly inconsistent observational data, given on a time-space cylinder that is a strict subset of the computational domain under consideration. Unlike previous approaches to this and related problems our starting point is a regularized least squares formulation in a continuous infinite-dimensional setting that is based on stable variational time-space formulations of the parabolic PDE. This allows us to derive a priori as well as a posteriori error bounds for the recovered states with respect to a certain reference solution. In these bounds the regularization parameter is disentangled from the underlying discretization. An important ingredient for the derivation of a posteriori bounds is the construction of suitable Fortin operators which allow us to control oscillation errors stemming from the discretization of dual norms. Moreover, the variational framework allows us to contrive preconditioners for the discrete problems whose application can be performed in linear time, and for which the condition numbers of the preconditioned systems are uniformly proportional to that of the regularized continuous problem. In particular, we provide suitable stopping criteria for the iterative solvers based on the a posteriori error bounds. The presented numerical experiments quantify the theoretical findings and demonstrate the performance of the numerical scheme in relation with the underlying discretization and regularization.


翻译:本文涉及从一个时间空间圆柱上提供的不完整和可能不一致的观测数据中回收(近似)解决抛物线问题的办法,该圆柱体是所考虑的计算领域严格的一部分,与以前处理该问题和相关问题的方法不同,我们的起点是连续无限的、以抛物线 PDE 稳定的变异时间-空间配方为基础的固定最小方形。这使我们能够从某种参考解决方案中为被回收国家找到一个先验和事后误差界限。在这些界限中,正规化参数与潜在的离散脱钩分开来。衍生后边框的一个重要成份是建造合适的Fortin操作器,使我们能够在连续的无限维度环境中控制由两条规范离散产生的振动错误。此外,变异框架使我们能够为分解问题设定先决条件,这些问题的应用可以在线性时间进行,而先决条件系统的条件数目与常规化的持续问题完全相称。特别是,我们为离散的离心线线线边框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
将门创投
7+阅读 · 2017年7月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
将门创投
7+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员