The discovery of disease subtypes is an essential step for developing precision medicine, and disease subtyping via omics data has become a popular approach. While promising, subtypes obtained from conventional approaches may not be necessarily associated with clinical outcomes. The collection of rich clinical data along with omics data has provided an unprecedented opportunity to facilitate the disease subtyping process and to discovery clinically meaningful disease subtypes. Thus, we developed an outcome-guided Bayesian clustering (GuidedBayesianClustering) method to fully integrate the clinical data and the high-dimensional omics data. A Gaussian mixed model framework was applied to perform sample clustering; a spike-and-slab prior was utilized to perform gene selection; a mixture model prior was employed to incorporate the guidance from a clinical outcome variable; and a decision framework was adopted to infer the false discovery rate of the selected genes. We deployed conjugate priors to facilitate efficient Gibbs sampling. Our proposed full Bayesian method is capable of simultaneously (i) obtaining sample clustering (disease subtype discovery); (ii) performing feature selection (select genes related to the disease subtype); and (iii) utilizing clinical outcome variable to guide the disease subtype discovery. The superior performance of the GuidedBayesianClustering was demonstrated through simulations and applications of breast cancer expression data.


翻译:疾病亚型的发现是发展精密医学的一个必要步骤,通过食谱数据进行疾病亚型的亚型的发现已成为一种受欢迎的方法。虽然从传统方法中获得的亚型有希望,但从传统方法中获得的亚型不一定与临床结果相联系。收集丰富的临床数据和食谱数据提供了前所未有的机会,为疾病亚型过程提供了便利,并发现了具有临床意义的疾病亚型。因此,我们开发了一种结果引导的巴伊西亚群集(GuidedBayesian Clustering)方法,以充分整合临床数据和高维食谱数据。我们提议的全巴伊西亚方法能够同时(一) 获得样本集成(残疾亚型发现) ;(二) 进行地貌选择(先是利用峰值与临床结果变量的模型化分析,三) 采用混合模型模型选择(选择通过亚型的亚型的临床结果检测结果分析结果的模型)。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2019年8月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
4+阅读 · 2019年8月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员