Recent work in cognitive reasoning and computer vision has engendered an increasing popularity for the Violation-of-Expectation (VoE) paradigm in synthetic datasets. Inspired by work in infant psychology, researchers have started evaluating a model's ability to discriminate between expected and surprising scenes as a sign of its reasoning ability. Existing VoE-based 3D datasets in physical reasoning only provide vision data. However, current cognitive models of physical reasoning by psychologists reveal infants create high-level abstract representations of objects and interactions. Capitalizing on this knowledge, we propose AVoE: a synthetic 3D VoE-based dataset that presents stimuli from multiple novel sub-categories for five event categories of physical reasoning. Compared to existing work, AVoE is armed with ground-truth labels of abstract features and rules augmented to vision data, paving the way for high-level symbolic predictions in physical reasoning tasks.


翻译:最近在认知推理和计算机视觉方面开展的工作使合成数据集中违反预期(VoE)范式越来越受欢迎。在婴儿心理学工作的启发下,研究人员开始评估模型对预期和令人惊讶的场景进行区分的能力,作为其推理能力的标志。在物理推理中现有的基于VoE的三维数据集仅提供了视觉数据。然而,心理学家目前对物理推理的认知模型揭示婴儿对物体和相互作用产生了高度抽象的描述。利用这一知识,我们提议AVE:合成3DVoE:基于合成的3DVoE数据集,该数据集从多种新颖的子类中为五类物理推理提供刺激。与现有工作相比,AVoE武装了抽象特征和规则的地面图象标签,加强了视觉数据,为在物理推理任务中进行高层次的象征性预测铺平了道路。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
3+阅读 · 2020年11月26日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员