Most entropy measures depend on the spread of the probability distribution over the sample space X, and the maximum entropy achievable scales proportionately with the sample space cardinality |X|. For a finite |X|, this yields robust entropy measures which satisfy many important properties, such as invariance to bijections, while the same is not true for continuous spaces (where |X|=infinity). Furthermore, since R and R^d (d in Z+) have the same cardinality (from Cantor's correspondence argument), cardinality-dependent entropy measures cannot encode the data dimensionality. In this work, we question the role of cardinality and distribution spread in defining entropy measures for continuous spaces, which can undergo multiple rounds of transformations and distortions, e.g., in neural networks. We find that the average value of the local intrinsic dimension of a distribution, denoted as ID-Entropy, can serve as a robust entropy measure for continuous spaces, while capturing the data dimensionality. We find that ID-Entropy satisfies many desirable properties and can be extended to conditional entropy, joint entropy and mutual-information variants. ID-Entropy also yields new information bottleneck principles and also links to causality. In the context of deep learning, for feedforward architectures, we show, theoretically and empirically, that the ID-Entropy of a hidden layer directly controls the generalization gap for both classifiers and auto-encoders, when the target function is Lipschitz continuous. Our work primarily shows that, for continuous spaces, taking a structural rather than a statistical approach yields entropy measures which preserve intrinsic data dimensionality, while being relevant for studying various architectures.


翻译:大多数熵度量取决于概率分布在样本空间X上的展布情况,可达到的最大熵与样本空间基数|X|成比例。对于有限|X|,这产生了具有鲁棒性的熵度量,符合许多重要特性,例如对双射的不变性,而在连续空间中(其中|X|=无穷大),同样不成立。此外,由于R和R^d(d在Z +中)具有相同的基数(来自Cantor的对应论证),基数相关的熵度量无法编码数据维度。在这项工作中,我们质疑了基数和分布展布在为连续空间定义熵度量中的作用,这些连续空间可以经历多轮变换和扭曲,例如在神经网络中。我们发现,分布的局部固有维度的平均值,表示为ID-Entropy,可以作为连续空间的鲁棒熵度量,同时捕捉数据维度。我们发现,ID-Entropy满足许多理想特性,并且可以扩展为条件熵,联合熵和互信息变体。ID-Entropy还产生了新的信息瓶颈原理,并与因果性相关联。在深度学习的背景下,对于前馈架构,我们理论上和经验上表明,当目标函数为Lipschitz连续时,隐藏层的ID-Entropy直接控制分类器和自编码器的泛化间隙。我们的工作主要表明,在连续空间中,采用结构性而不是统计性的方法可产生保持内在数据维度的熵度量,同时对于研究各种体系结构具有相关性。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
48+阅读 · 2021年11月15日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
103+阅读 · 2020年3月22日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
一些关于随机矩阵的算法
PaperWeekly
1+阅读 · 2022年7月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
13+阅读 · 2022年10月20日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
48+阅读 · 2021年11月15日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
103+阅读 · 2020年3月22日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
一些关于随机矩阵的算法
PaperWeekly
1+阅读 · 2022年7月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员