The Internet of Things is in constant growth, with millions of devices used every day in our homes and workplaces to ease our lives. Such a strict coexistence between humans and smart devices makes the latter digital witnesses of our every-day lives through their sensor systems. This opens up to a new area of digital investigation named IoT Forensics, where digital traces produced by smart devices (network traffic, in primis) are leveraged as evidences for forensic purposes. It is therefore important to create tools able to capture, store and possibly analyse easily such digital traces to ease the job of forensic investigators. This work presents one of such tools, named Feature-Sniffer, which is thought explicitly for Wi-Fi enabled smart devices used in Smart Building/Smart Home scenarios. Feature-Sniffer is an add-on for OpenWrt-based access points and allows to easily perform online traffic feature extraction, avoiding to store large PCAP files. We present Feature-Sniffer with an accurate description of the implementation details, and we show its possible uses with practical examples for device identification and activity classification from encrypted traffic produced by IoT cameras. We release Feature-Sniffer publicly for reproducible research.


翻译:互联网在不断增长,我们的家庭和工作场所每天使用数百万个装置来方便我们的生活。这样的人类和智能装置之间的严格共存使得后一个数字证人通过感应系统看到我们每天的生活。这打开了一个新的数字调查领域,名为IoT法医,在这个领域,智能装置(网络交通,棱镜)产生的数字痕迹被作为法医证据加以利用。因此,重要的是要创造能够捕捉、储存并可能轻易分析这种数字痕迹的工具,以方便法医调查人员的工作。这项工作展示了一种名为“Featary-Sniffer”的工具,被人们清楚地认为是智能建筑/智能家庭情景中使用的Wi-Fi功能智能装置。功能Sniffer是OpenWrt接入点的附加内容,可以方便地进行在线交通特征提取,避免储存大型PCAP文件。我们展示了对实施细节的准确描述,我们用实用的例子展示了它可能用于设备识别和IoT摄像头制作的活动分类。我们公开发布Fetatriat-Sniffer用于进行加密交通研究。

0
下载
关闭预览

相关内容

软件工程评估(Evaluation and Assessment in Software Engineering,EASE)会议是一个国际领先的会议场所,学术界和实践者可以在此展示和讨论他们对基于证据的软件工程的研究及其对软件实践的影响。第23届EASE将于2019年4月在丹麦哥本哈根举行,由哥本哈根IT大学主办。EASE 2019欢迎向不同领域提交高质量的研究报告:完整的研究论文、短篇论文和手工艺品、新兴成果和愿景、行业轨迹、博士研讨会、海报。官网链接:https://ease2019.org/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
11+阅读 · 2021年3月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员