Communication over a classical multiple-access channel (MAC) with entanglement resources is considered, whereby two transmitters share entanglement resources a priori before communication begins. Leditzki et al. (2020) presented an example of a classical MAC, defined in terms of a pseudo telepathy game, such that the sum rate with entangled transmitters is strictly higher than the best achievable sum rate without such resources. Here, we derive a full characterization of the capacity region for the general MAC with entangled transmitters, and show that the previous result can be obtained as a special case. A single letter formula is established involving auxiliary variables and ancillas of finite dimensions. This, in turn, leads to a sufficient entanglement rate to achieve the rate region. Furthermore, it has long been known that the capacity region of the classical MAC under a message-average error criterion can be strictly larger than with a maximal error criterion (Dueck, 1978). We observe that given entanglement resources, the regions coincide.
翻译:考虑在经典多发信道中使用纠缠资源进行通信,其中两个发射机在通信开始前共享纠缠资源。Leditzki等人(2020)提出了一个经典多发信道的例子,这个信道的定义是基于一个拟态神秘力学游戏,证明使用纠缠资源的总速率严格高于没有使用这种资源的最佳可能总速率。在此,我们推导了一个带有纠缠发射机的一般多发信道的容量区域的完整特征,并证明了先前的结果是一个特例。我们建立了一个包含有限辅助变量和辅助电子的单字母公式,从而得出了实现速率区域的足够纠缠率。此外,长期以来一直知道,在消息平均误差准则下的经典多发信道的容量区域可以严格大于最大误差准则(Dueck,1978)。我们观察到,如果给定纠缠资源,则区域相等。