We consider image completion from the perspective of amortized inference in an image generative model. We leverage recent state of the art variational auto-encoder architectures that have been shown to produce photo-realistic natural images at non-trivial resolutions. Through amortized inference in such a model we can train neural artifacts that produce diverse, realistic image completions even when the vast majority of an image is missing. We demonstrate superior sample quality and diversity compared to prior art on the CIFAR-10 and FFHQ-256 datasets. We conclude by describing and demonstrating an application that requires an in-painting model with the capabilities ours exhibits: the use of Bayesian optimal experimental design to select the most informative sequence of small field of view x-rays for chest pathology detection.
翻译:我们从图像基因模型中的摊销推断角度来考虑图像的完成情况。 我们利用最新水平的艺术变异自动编码结构,显示这些结构在非三角分辨率上产生摄影现实的自然图像。 通过在模型中进行摊销推断,我们可以对神经制品进行培训,即使缺少绝大多数图像,也能够产生多样化、现实的图像完成情况。我们展示了优于CIFAR-10和FFHQ-256数据集的样本质量和多样性。我们最后通过描述和演示一个应用,需要一个具有我们所展示的功能的内漆模型:利用贝叶斯最佳实验设计来选择用于胸部病理检测的最小的观察场X射线的最丰富信息序列。