Automatic Target Recognition (ATR) algorithms classify a given Synthetic Aperture Radar (SAR) image into one of the known target classes using a set of training images available for each class. Recently, learning methods have shown to achieve state-of-the-art classification accuracy if abundant training data is available, sampled uniformly over the classes, and their poses. In this paper, we consider the task of ATR with a limited set of training images. We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm, such as a Convolutional neural network (CNN). The proposed data augmentation method employs a limited persistence sparse modeling approach, capitalizing on commonly observed characteristics of wide-angle synthetic aperture radar (SAR) imagery. Specifically, we exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting. Using this estimated model, we synthesize new images at poses and sub-pixel translations not available in the given data to augment CNN's training data. The experimental results show that for the training data starved region, the proposed method provides a significant gain in the resulting ATR algorithm's generalization performance.
翻译:自动目标识别( ATR) 算法 将特定合成孔径雷达(SAR) 图像分类为已知的目标类别之一, 使用每类都有一套培训图像 。 最近, 学习方法显示, 如果有丰富的培训数据, 可以实现最先进的分类准确性 。 我们在本文件中考虑 ATR 的任务, 使用有限的培训图像 。 我们提出数据增强方法, 整合域知识, 提高数据密集型学习算法的普及能力, 如革命神经网络 。 拟议的数据增强方法采用了有限的耐久性分散模型方法, 利用广角合成孔径雷达(SAR) 图像的常见观察到的特征。 具体地说, 我们利用空间域的分散中心的偏狭性, 以及亚齐蒙特哈尔域的分散系数结构, 以解决过度匹配模型安装的错误问题 。 我们利用这一估计模型, 将配置和子ixel 翻译的新图像合成成一个有限的模型, 利用广角合成孔径雷达(SAR) 图像的常用模型, 利用这些常见的常见特征 。 我们利用空间域域的实验性培训结果, 显示 数据 获取 。