DAMON leverages manifold learning and variational autoencoding to achieve obstacle avoidance, allowing for motion planning through adaptive graph traversal in a pre-learned low-dimensional hierarchically-structured manifold graph that captures intricate motion dynamics between a robotic arm and its obstacles. This versatile and reusable approach is applicable to various collaboration scenarios. The primary advantage of DAMON is its ability to embed information in a low-dimensional graph, eliminating the need for repeated computation required by current sampling-based methods. As a result, it offers faster and more efficient motion planning with significantly lower computational overhead and memory footprint. In summary, DAMON is a breakthrough methodology that addresses the challenge of dynamic obstacle avoidance in robotic systems and offers a promising solution for safe and efficient human-robot collaboration. Our approach has been experimentally validated on a 7-DoF robotic manipulator in both simulation and physical settings. DAMON enables the robot to learn and generate skills for avoiding previously-unseen obstacles while achieving predefined objectives. We also optimize DAMON's design parameters and performance using an analytical framework. Our approach outperforms mainstream methodologies, including RRT, RRT*, Dynamic RRT*, L2RRT, and MpNet, with 40\% more trajectory smoothness and over 65\% improved latency performance, on average.


翻译:DAMON利用流形学习和变分自编码技术进行障碍物避免,并通过自适应图遍历在一个预先学习的低维分层结构流形图中实现运动规划,该图捕捉了机械臂与其障碍物之间的复杂运动动态。此通用且可重复使用的方法适用于各种协作场景。DAMON的主要优势是能够在低维图中嵌入信息,消除了当前基于采样的方法所需的重复计算。因此,它提供了更快、更高效的运动规划,计算开销和内存占用显著降低。简而言之,DAMON是一种突破性的方法,解决了机器人系统中动态障碍物避免的挑战,并为安全高效的人机协作提供了有前途的解决方案。我们的方法在模拟和物理环境中对7个自由度机械臂进行了实验验证。DAMON为机器人学习和生成避免先前未见障碍物的技能并实现预定义目标提供了能力。我们还使用分析框架优化了DAMON的设计参数和性能。与RRT、RRT*、Dynamic RRT*、L2RRT和MpNet等主流方法相比,我们的方法平均具有40%以上的轨迹平滑度和65%以上的潜伏性能改进。

0
下载
关闭预览

相关内容

流形学习,全称流形学习方法(Manifold Learning),自2000年在著名的科学杂志《Science》被首次提出以来,已成为信息科学领域的研究热点。在理论和应用上,流形学习方法都具有重要的研究意义。假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化。它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律。
【CMU】基于图神经网络的联合检测与多目标跟踪
专知会员服务
56+阅读 · 2020年6月24日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
27+阅读 · 2023年1月5日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关VIP内容
【CMU】基于图神经网络的联合检测与多目标跟踪
专知会员服务
56+阅读 · 2020年6月24日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员