Time Series Extrinsic Regression (TSER) involves using a set of training time series to form a predictive model of a continuous response variable that is not directly related to the regressor series. The TSER archive for comparing algorithms was released in 2022 with 19 problems. We increase the size of this archive to 63 problems and reproduce the previous comparison of baseline algorithms. We then extend the comparison to include a wider range of standard regressors and the latest versions of TSER models used in the previous study. We show that none of the previously evaluated regressors can outperform a regression adaptation of a standard classifier, rotation forest. We introduce two new TSER algorithms developed from related work in time series classification. FreshPRINCE is a pipeline estimator consisting of a transform into a wide range of summary features followed by a rotation forest regressor. DrCIF is a tree ensemble that creates features from summary statistics over random intervals. Our study demonstrates that both algorithms, along with InceptionTime, exhibit significantly better performance compared to the other 18 regressors tested. More importantly, these two proposals (DrCIF and FreshPRINCE) models are the only ones that significantly outperform the standard rotation forest regressor.


翻译:时间序列外生回归(TSER)涉及使用一组训练时间序列来形成一个连续响应变量的预测模型,该模型与回归器系列无直接关系。用于比较算法的TSER档案在2022年发布了19个问题。我们将这个存档大小增加到63个问题,并重现基准算法的先前比较。然后,我们扩展比较范围,包括更广泛的标准回归器和先前研究中使用的最新版本TSER模型。我们展示了先前评估的任何回归器都无法胜过标准分类器旋转森林的回归自适应。我们介绍了两种新的TSER算法,这些算法是从时间序列分类的相关工作中开发出来的。FreshPRINCE是一个管道估计器,由转换成宽范围的摘要特征,然后是旋转森林回归器。DrCIF是一个树模型,它将摘要统计信息放在随机时间间隔上,从中创建特征。我们的研究表明,这两种算法,以及InceptionTime,与测试的其他18个回归器相比,表现显著更好。更重要的是,这两种提案(DrCIF和FreshPRINCE)模型是唯一明显优于标准旋转森林回归器的模型。

0
下载
关闭预览

相关内容

【干货书】预测原理与实战,Forecasting: Principles & Practice
专知会员服务
94+阅读 · 2022年4月11日
【Google-BryanLim等】可解释深度学习时序预测
专知会员服务
63+阅读 · 2021年12月19日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
14+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
【干货书】预测原理与实战,Forecasting: Principles & Practice
专知会员服务
94+阅读 · 2022年4月11日
【Google-BryanLim等】可解释深度学习时序预测
专知会员服务
63+阅读 · 2021年12月19日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
14+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员