We study population protocols, a model of distributed computing appropriate for modeling well-mixed chemical reaction networks and other physical systems where agents exchange information in pairwise interactions, but have no control over their schedule of interaction partners. The well-studied *majority* problem is that of determining in an initial population of $n$ agents, each with one of two opinions $A$ or $B$, whether there are more $A$, more $B$, or a tie. A *stable* protocol solves this problem with probability 1 by eventually entering a configuration in which all agents agree on a correct consensus decision of $\mathsf{A}$, $\mathsf{B}$, or $\mathsf{T}$, from which the consensus cannot change. We describe a protocol that solves this problem using $O(\log n)$ states ($\log \log n + O(1)$ bits of memory) and optimal expected time $O(\log n)$. The number of states $O(\log n)$ is known to be optimal for the class of polylogarithmic time stable protocols that are "output dominant" and "monotone". These are two natural constraints satisfied by our protocol, making it simultaneously time- and state-optimal for that class. We introduce a key technique called a "fixed resolution clock" to achieve partial synchronization. Our protocol is *nonuniform*: the transition function has the value $\left \lceil {\log n} \right \rceil$ encoded in it. We show that the protocol can be modified to be uniform, while increasing the state complexity to $\Theta(\log n \log \log n)$.


翻译:我们研究的是人口协议,一种适合模型化工反应网络和其他物理系统的分布计算模型,其代理商在对称互动中交换信息,但对其互动伙伴的日程表没有控制权。经过仔细研究的* 多数* 问题是在初始人群中确定美元代理商,每个代理商持有两种意见中的美元或美元,是否存在更多的A美元、更多的B美元或一条线条。一个* 稳定* 协议解决了这个问题,概率1,最终进入一个配置,所有代理商都同意一个正确的共识决定 $\ mathsf{A}$、 $\mathsf{B} 美元或$\mathsfsf{T} 问题。我们描述一个协议,用$(log n) 或美元来解决这个问题, $(log n) + O(1) 记忆百元) 和最佳的预期时间 $O(log n) 。所有代理商在配置中同意正确的 $(log n) $(log n) $(n), $ (n) 的金额) 的金额是已知的一致值, 或正态的过渡功能。

0
下载
关闭预览

相关内容

《5G+智慧农业解决方案》22页PPT,三昇农业
专知会员服务
53+阅读 · 2022年3月23日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员