We propose using Machine Learning and Artificial Neural Networks (ANN) to enhance residual-based stabilization methods for advection-dominated differential problems. Specifically, in the context of the Finite Element method, we consider the Streamline Upwind Petrov-Galerkin (SUPG) stabilization method and we employ ANN to optimally choose the stabilization parameter on which the method relies. We generate our dataset by solving optimization problems to find the optimal stabilization parameters that minimize the distances among the numerical and the exact solutions for different data of differential problem and the numerical settings of the Finite Element method, e.g. mesh size and polynomial degree. The dataset generated is used to train the ANN, and we used the latter "online" to predict the optimal stabilization parameter to be used in the SUPG method for any given numerical setting and problem data. We show, by means of 1D and 2D numerical tests for the advection-dominated differential problem, that our ANN approach yields more accurate solution than using the conventional stabilization parameter for the SUPG method.
翻译:我们建议使用机器学习和人工神经网络(ANN)来强化基于残余的稳定方法,解决以消化为主的差别问题。具体地说,在“有限元素”方法的背景下,我们考虑“精简上风Petrov-Galerkin”(SUPG)稳定法,我们使用ANN来最佳地选择该方法所依赖的稳定参数。我们通过解决优化问题来生成我们的数据集,以找到最佳的稳定参数,这种稳定参数可以最大限度地减少差异问题不同数据之间的距离和确切的解决方案,以及精密元素方法的数值设置,例如网格大小和多元度。生成的数据集用于培训ANN,我们用后者“在线”来预测任何特定数字设置和问题数据在“SUPG”方法中使用的最佳稳定参数。我们通过1D和2D数字测试来测定以适应为主的差别问题,显示我们的“ANN”方法产生的解决方案比使用常规稳定参数对SUPG方法的精确。