We introduce the decision-aware time-series conditional generative adversarial network (DAT-CGAN) as a method for time-series generation. The framework adopts a multi-Wasserstein loss on structured decision-related quantities, capturing the heterogeneity of decision-related data and providing new effectiveness in supporting the decision processes of end users. We improve sample efficiency through an overlapped block-sampling method, and provide a theoretical characterization of the generalization properties of DAT-CGAN. The framework is demonstrated on financial time series for a multi-time-step portfolio choice problem. We demonstrate better generative quality in regard to underlying data and different decision-related quantities than strong, GAN-based baselines.
翻译:我们采用具有决策意识的时间序列有条件对抗网络(DAT-CGAN)作为时间序列生成的一种方法,该框架对结构化决策相关数量采取多瓦瑟斯坦损失,捕捉决策相关数据的异质性,在支持终端用户的决策过程中提供新的效力;我们通过重叠的区块抽样方法提高抽样效率,并对DAT-CGAN的通用特性进行理论定性;该框架在财务时间序列中演示,说明一个多时间步骤组合选择问题;我们展示了基础数据和不同决策相关数量的比强的、基于GAN的基线更好的归国质量。