Collaborative filtering based recommendation learns users' preferences from all users' historical behavior data, and has been popular to facilitate decision making. R Recently, the fairness issue of recommendation has become more and more essential. A recommender system is considered unfair when it does not perform equally well for different user groups according to users' sensitive attributes~(e.g., gender, race). Plenty of methods have been proposed to alleviate unfairness by optimizing a predefined fairness goal or changing the distribution of unbalanced training data. However, they either suffered from the specific fairness optimization metrics or relied on redesigning the current recommendation architecture. In this paper, we study how to improve recommendation fairness from the data augmentation perspective. The recommendation model amplifies the inherent unfairness of imbalanced training data. We augment imbalanced training data towards balanced data distribution to improve fairness. The proposed framework is generally applicable to any embedding-based recommendation, and does not need to pre-define a fairness metric. Extensive experiments on two real-world datasets clearly demonstrate the superiority of our proposed framework. We publish the source code at https://github.com/newlei/FDA.
翻译:合作过滤基于的建议从所有用户的历史行为数据中吸取了用户的偏好,并受到欢迎以方便决策。最近,建议中的公平问题变得越来越重要。推荐者系统如果根据用户的敏感属性(例如性别、种族)对不同用户群体表现不佳,则被认为不公平。提出了许多方法,通过优化预先界定的公平目标或改变不平衡培训数据的分布来减轻不公平现象。然而,他们要么受到具体的公平优化标准的影响,要么依靠重新设计当前建议结构。我们在本文件中研究如何从数据扩充的角度改进建议公正性。建议模式扩大了不平衡培训数据的内在不公平性。我们增加了不平衡的培训数据,以达到平衡的数据分配,以提高公平性。拟议框架一般适用于任何基于嵌入性的建议,不需要预先界定公平性指标。两个真实世界数据集的广泛实验清楚地表明了我们拟议框架的优越性。我们在 https://github.com/newlei/FDA 上公布了源代码。