This paper introduces a novel geometric multigrid solver for unstructured curved surfaces. Multigrid methods are highly efficient iterative methods for solving systems of linear equations. Despite the success in solving problems defined on structured domains, generalizing multigrid to unstructured curved domains remains a challenging problem. The critical missing ingredient is a prolongation operator to transfer functions across different multigrid levels. We propose a novel method for computing the prolongation for triangulated surfaces based on intrinsic geometry, enabling an efficient geometric multigrid solver for curved surfaces. Our surface multigrid solver achieves better convergence than existing multigrid methods. Compared to direct solvers, our solver is orders of magnitude faster. We evaluate our method on many geometry processing applications and a wide variety of complex shapes with and without boundaries. By simply replacing the direct solver, we upgrade existing algorithms to interactive frame rates, and shift the computational bottleneck away from solving linear systems.


翻译:本文为未结构的曲线表面引入了新型的几何多格化求解器。 多元格化方法是解决线性方程式系统的高效迭代方法。 尽管在解决结构化域定义的问题方面取得了成功, 将多格化法推广到非结构化曲线域仍然是一个挑战性的问题。 关键缺失的成分是将功能转移到不同多格化级的延长操作器。 我们提出了一个基于内在几何方法计算三角形表面延长时间的新方法, 使曲线表层能够有一个高效的几何多格化求解器。 我们的表面多格化求解器比现有的多格化法更能融合。 与直接求解器相比, 我们的求解器速度更快。 我们评估了许多几何处理应用程序的方法, 以及有边界和无边界的多种复杂形状。 我们简单地替换直接求解器, 将现有的算法升级为互动框架率, 并将计算瓶颈从解决线性系统上移开。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
40+阅读 · 2020年8月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月14日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员