The simulation of stochastic wind loads is necessary for many applications in wind engineering. The proper orthogonal decomposition (POD)-based spectral representation method is a popular approach used for this purpose due to its computational efficiency. For general wind directions and building configurations, the data-driven POD-based stochastic model is an alternative that uses wind tunnel smoothed auto- and cross-spectral density as input to calibrate the eigenvalues and eigenvectors of the target load process. Even though this method is straightforward and presents advantages compared to using empirical target auto- and cross-spectral density, the limitations and errors associated with this model have not been investigated. To this end, an extensive experimental study on a rectangular building model considering multiple wind directions and configurations was conducted to allow the quantification of uncertainty related to the use of wind tunnel data for calibration and validation of the data-driven POD-based stochastic model. Errors associated with the use of typical wind tunnel records for model calibration, the model itself, and the truncation of modes were quantified. Results demonstrate that the data-driven model can efficiently simulate stochastic wind loads with negligible model errors, while the errors associated with calibration to typical wind tunnel data can be important.
翻译:暂无翻译