Automated debugging techniques, such as Fault Localisation (FL) or Automated Program Repair (APR), are typically designed under the Single Fault Assumption (SFA). However, in practice, an unknown number of faults can independently cause multiple test case failures, making it difficult to allocate resources for debugging and to use automated debugging techniques. Clustering algorithms have been applied to group the test failures according to their root causes, but their accuracy can often be lacking due to the inherent limits in the distance metrics for test cases. We introduce a new test distance metric based on hypergraphs and evaluate their accuracy using multi-fault benchmarks that we have built on top of Defects4J and SIR. Results show that our technique, Hybiscus, can automatically achieve perfect clustering (i.e., the same number of clusters as the ground truth number of root causes, with all failing tests with the same root cause grouped together) for 418 out of 605 test runs with multiple test failures. Better failure clustering also allows us to separate different root causes and apply FL techniques under SFA, resulting in saving up to 82% of the total wasted effort when compared to the state-of-the-art technique for multiple fault localisation.


翻译:自动调试技术,如失灵定位(FL)或自动程序修补(APR),通常是在单一失灵假设(SFA)下设计的。然而,在实践中,数量不详的故障数量可能独立导致多个测试案例失败,因此难以分配调试资源和使用自动调试技术。对测试失败按其根源分组应用了集束算法,但由于测试案例的距离度量的内在限制,其准确性可能往往缺乏。我们根据超光速引入新的测试距离度指标,并使用我们在Deffects4J和SIR上方建立的多错基准评估其准确性。结果显示,我们的Hybiscus技术可以自动实现完美的集束(即与根数的地面真数相同),在605项测试中,418项测试的同一根数加在一起进行的所有失败测试都会导致多重测试失败。我们还可以将不同的根源分开,并将FL技术应用在SFA之下,从而在将地方级技术的完全浪费率保存到82%的情况下,从而将局部功率保存到全部浪费的技术。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
41+阅读 · 2021年4月2日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
179+阅读 · 2020年7月29日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月17日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
3+阅读 · 2020年2月5日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员