Clustering is a commonly used method for exploring and analysing data where the primary objective is to categorise observations into similar clusters. In recent decades, several algorithms and methods have been developed for analysing clustered data. We notice that most of these techniques deterministically define a cluster based on the value of the attributes, distance, and density of homogenous and single-featured datasets. However, these definitions are not successful in adding clear semantic meaning to the clusters produced. Evolutionary operators and statistical and multi-disciplinary techniques may help in generating meaningful clusters. Based on this premise, we propose a new evolutionary clustering algorithm (ECAStar) based on social class ranking and meta-heuristic algorithms for stochastically analysing heterogeneous and multiple-featured datasets. The ECAStar is integrated with recombinational evolutionary operators, Levy flight optimisation, and some statistical techniques, such as quartiles and percentiles, as well as the Euclidean distance of the K-means algorithm. Experiments are conducted to evaluate the ECAStar against five conventional approaches: K-means (KM), K-meansPlusPlus (KMPlusPlus), expectation maximisation (EM), learning vector quantisation (LVQ), and the genetic algorithm for clusteringPlusPlus (GENCLUSTPlusPlus).


翻译:集群是探索和分析数据的一种常用方法,其主要目标是将观测分为相似的组群。近几十年来,为分析集群数据开发了几种算法和方法。我们注意到,这些技术中的大多数都根据特性、距离和同一和单一特性数据集密度的价值确定一个组群。然而,这些定义在为所生成的组群增加明确的语义意义方面并不成功。进化操作员和统计及多学科技术可能有助于生成有意义的组群。基于这一前提,我们提议以社会级排名和超超值算法为基础,采用新的进化组群算法(ECAStar ), 用于对多样性和多功能数据集进行随机分析。 ECAStar与再融合的进化操作员、Levy飞行优化,以及某些统计技术,如四分级和百分级,以及K-手段算法的EuPPlidean距离。我们进行了实验,以便对照五种常规方法评估ECStar:K- means(K-gencial-Plus), K-Sqolusalisalizalizalizations (K-Squlalizations), K-Squlusalislus), K-alizalizislus 和K-alislislislislisionalislislislislisionalizations (K-s), K-Slislislislisalisalisalisionalisalislislislislis), K-s), 和K-lisalisalislislislislislislislislisalisalisil), 。进行了实验, 。根据五个常规方法评价ECAcal(K-alisalisalisalizalisal(K-Sil(K-Sil(K-Sildalisalisal),K-sil),K-Sil),K-lisalisalisalizalisil),K-lisil(K-Sil),K-lislislisalisal),K-Slisal-Sil),K-palislislisal-Sil),

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
3+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
3+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Top
微信扫码咨询专知VIP会员