In this paper, we present a GNN-based Line Segment Parser (GLSP), which uses a junction heatmap to predict line segments' endpoints, and graph neural networks to extract line segments and their categories. Different from previous floor plan recognition methods, which rely on semantic segmentation, our proposed method is able to output vectorized line segment and requires less post-processing steps to be put into practical use. Our experiments show that the methods outperform state-of-the-art line segment detection models on multi-class line segment detection tasks with floor plan images. In the paper, we use our floor plan dataset named Large-scale Residential Floor Plan data (LRFP). The dataset contains a total of 271,035 floor plan images. The label corresponding to each picture contains the scale information, the categories and outlines of rooms, and the endpoint positions of line segments such as doors, windows, and walls. Our augmentation method makes the dataset adaptable to the drawing styles of as many countries and regions as possible.
翻译:在本文中,我们提出了一个基于 GNN 的线段截图( GLSP ), 该图使用连接热图来预测线段的端点, 并用图形神经网络来提取线段及其类别。 与以前依靠语义分解的地面计划识别方法不同, 我们建议的方法能够输出矢量化线段, 并需要较少的后处理步骤来实际应用。 我们的实验显示, 方法优于用地平面计划图像探测多级线段探测任务的最新线段探测模型。 在本文中, 我们使用我们的地面计划数据集, 名为大型住宅楼层计划( LRFP ) 。 该数据集包含总共271 035 个地面计划图像。 每幅图的标签包含规模信息、 房间的类别和轮廓, 以及像门、 窗和墙等线段的端点位置。 我们的增强方法使数据集适应尽可能多的国家和地区的绘图风格 。</s>