A tiny object in the sky cannot be an elephant. Context reasoning is critical in visual recognition, where current inputs need to be interpreted in the light of previous experience and knowledge. To date, research into contextual reasoning in visual recognition has largely proceeded with supervised learning methods. The question of whether contextual knowledge can be captured with self-supervised learning regimes remains under-explored. Here, we established a methodology for context-aware self-supervised learning. We proposed a novel Self-supervised Learning Method for Context Reasoning (SeCo), where the only inputs to SeCo are unlabeled images with multiple objects present in natural scenes. Similar to the distinction between fovea and periphery in human vision, SeCo processes self-proposed target object regions and their contexts separately, and then employs a learnable external memory for retrieving and updating context-relevant target information. To evaluate the contextual associations learned by the computational models, we introduced two evaluation protocols, lift-the-flap and object priming, addressing the problems of "what" and "where" in context reasoning. In both tasks, SeCo outperformed all state-of-the-art (SOTA) self-supervised learning methods by a significant margin. Our network analysis revealed that the external memory in SeCo learns to store prior contextual knowledge, facilitating target identity inference in lift-the-flap task. Moreover, we conducted psychophysics experiments and introduced a Human benchmark in Object Priming dataset (HOP). Our quantitative and qualitative results demonstrate that SeCo approximates human-level performance and exhibits human-like behavior. All our source code and data are publicly available here.


翻译:天空中的一个小天体不可能是大象。 背景推理在视觉识别中至关重要, 当前的投入需要根据先前的经验和知识来解释。 至今, 视觉识别中背景推理的研究主要在监督的学习方法下进行。 是否可以通过自我监督的学习制度来捕捉背景知识的问题仍然没有得到充分探讨。 在这里, 我们为从上下文中学习的自我监督学习建立了一种方法。 我们提出了一个新的“ 自我监督的背景解释方法 ” 。 我们提出了两种评估程序, 提升和对象解释背景解释, 向Seco提供的唯一投入是没有在自然场中存在多个对象的定性图像标记。 类似人类视觉中叶子与边缘的区别, Seco 单独处理自导目标目标区域及其背景。 然后使用可学习的外部记忆 。 在Secocial 数据库中,Secocial-dealalal- excial excial- excial excience exliversal- exliferations, sublical- sublical- sublical- exliveral- exal- exlical- subliveral- exal- laview- exlical- exal- exal- laview- liclegal- laview- legal- labal- labal- ex- labal- labololololol- ex- lablegal- ladeal- laview- ex- labal- labal- ex- lex- leglegal- labal- laxal- labal- 工作, 我们cal- sal- 工作, 工作,我们内部学习系统, 我们 工作, 我们 学会, 学会,我们内部学,我们的学习系统,我们的理论和Slial- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- slal- sal- leal- 和SOIal-

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员