We present iSDF, a continual learning system for real-time signed distance field (SDF) reconstruction. Given a stream of posed depth images from a moving camera, it trains a randomly initialised neural network to map input 3D coordinate to approximate signed distance. The model is self-supervised by minimising a loss that bounds the predicted signed distance using the distance to the closest sampled point in a batch of query points that are actively sampled. In contrast to prior work based on voxel grids, our neural method is able to provide adaptive levels of detail with plausible filling in of partially observed regions and denoising of observations, all while having a more compact representation. In evaluations against alternative methods on real and synthetic datasets of indoor environments, we find that iSDF produces more accurate reconstructions, and better approximations of collision costs and gradients useful for downstream planners in domains from navigation to manipulation. Code and video results can be found at our project page: https://joeaortiz.github.io/iSDF/ .
翻译:我们展示了iSDF, 这是一个用于实时签名远程场重建的连续学习系统。 在一个移动相机所显示的深度图像流中, 它训练了一个随机自定义的神经网络, 将输入的 3D 坐标映射为大致的签名距离。 模型是自我监督的, 通过在一组正在积极抽样的查询点中用距离将预期的签字距离与最接近的抽样点进行最小化。 与以前基于 voxel 网格的工作相比, 我们的神经系统方法能够提供适应性的详细程度, 在部分观测到的区域进行合理填充, 并去除观测结果, 所有这些都具有更为紧凑的代表性。 在对室内环境真实和合成数据集的替代方法进行评估时, 我们发现 iSDFFD 生成了更准确的重建, 以及更精确的碰撞成本和梯度的近似值, 有助于下游规划者从导航到操纵。 代码和视频结果可见我们的项目网页 : https://joeaortiz.github. io/ iSDF/ 。