Training deep learning (DL) models that do not fit into the memory of a single GPU is a vexed process, forcing users to procure multiple GPUs to adopt model-parallel execution. Unfortunately, sequential dependencies in neural architectures often block efficient multi-device training, leading to suboptimal performance. We present 'model spilling', a technique aimed at models such as Transformers and CNNs to move groups of layers, or shards, between DRAM and GPU memory, thus enabling arbitrarily large models to be trained even on just one GPU. We then present a set of novel techniques leveraging spilling to raise efficiency for multi-model training workloads such as model selection: a new hybrid of task- and model-parallelism, a new shard scheduling heuristic, and 'double buffering' to hide latency. We prototype our ideas into a system we call HYDRA to support seamless single-model and multi-model training of large DL models. Experiments with real benchmark workloads show that HYDRA is over 7x faster than regular model parallelism and over 50% faster than state-of-the-art industrial tools for pipeline parallelism.


翻译:与单个 GPU 记忆中不相适应的深层次学习( DL) 培训模式是一个繁琐的过程,迫使用户购买多个 GPU 以采用模型平行执行。 不幸的是,神经结构的相继依赖性往往阻碍高效多功能培训,导致不优化的性能。 我们提出“ 模型溢出 ”, 一种针对变异器和CNNs等模型的技术, 以移动DRAM 和 GPU 记忆之间的层组或碎片, 从而使任意的大型模型即使只用一个 GPU 也能接受培训。 然后我们提出一套利用溢出效应提高多模式培训工作量效率的新技术, 如模型选择: 任务和模型平行性的新组合和模型平行性, 新的硬性排时态, 和“ 双重缓冲性缓冲” 以隐藏隐蔽性。 我们将我们称之为 HYDRA 的理念建成一个系统, 以支持无缝的单一模型和大型 DL 模型的多模型培训。 实际基准工作量实验显示 HYDRA 比常规模型平行平行性超7x 和超过50 % 的平行性平行性工业工具 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
已删除
将门创投
5+阅读 · 2019年6月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月16日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
3+阅读 · 2018年11月19日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关VIP内容
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
已删除
将门创投
5+阅读 · 2019年6月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年12月16日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
3+阅读 · 2018年11月19日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Top
微信扫码咨询专知VIP会员