In recent years, deep neural networks (DNNs) have known an important rise in popularity. However, although they are state-of-the-art in many machine learning challenges, they still suffer from several limitations. For example, DNNs require a lot of training data, which might not be available in some practical applications. In addition, when small perturbations are added to the inputs, DNNs are prone to misclassification errors. DNNs are also viewed as black-boxes and as such their decisions are often criticized for their lack of interpretability. In this chapter, we review recent works that aim at using graphs as tools to improve deep learning methods. These graphs are defined considering a specific layer in a deep learning architecture. Their vertices represent distinct samples, and their edges depend on the similarity of the corresponding intermediate representations. These graphs can then be leveraged using various methodologies, many of which built on top of graph signal processing. This chapter is composed of four main parts: tools for visualizing intermediate layers in a DNN, denoising data representations, optimizing graph objective functions and regularizing the learning process.


翻译:近年来,深神经网络(DNNs)的受欢迎程度有了显著提高,然而,尽管这些网络是许多机器学习挑战中最先进的,但它们仍受到若干限制。例如,DNNs需要大量培训数据,而这些数据在某些实际应用中可能无法提供。此外,在输入中添加小扰动时,DNS容易出现错误分类。DNS也被视为黑箱,因此其决定往往因其缺乏解释性而受到批评。本章我们审查了最近旨在使用图表作为工具改进深层次学习方法的工程。这些图表的定义考虑到深层学习结构中的具体层。它们的脊椎代表不同的样本,其边缘取决于相应的中间表达方式的相似性。然后,这些图表可以使用各种方法加以利用,其中许多方法建在图形信号处理的顶端。本章由四个主要部分组成:在 DNNS 中直观中间层的工具、解调数据演示、优化图表目标功能和使学习过程正规化。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
115+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
9+阅读 · 2021年10月5日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
49+阅读 · 2020年12月16日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
9+阅读 · 2021年10月5日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
49+阅读 · 2020年12月16日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
53+阅读 · 2018年12月11日
Top
微信扫码咨询专知VIP会员