Most segmentation losses are arguably variants of the Cross-Entropy (CE) or Dice losses. In the abundant segmentation literature, there is no clear consensus as to which of these losses is a better choice, with varying performances for each across different benchmarks and applications. In this work, we develop a theoretical analysis that links these two types of losses, exposing their advantages and weaknesses. First, we provide a constrained-optimization perspective showing that CE and Dice share a much deeper connection than previously thought: They both decompose into label-marginal penalties and closely related ground-truth matching penalties. Then, we provide bound relationships and an information-theoretic analysis, which uncover hidden label-marginal biases: Dice has an intrinsic bias towards specific extremely imbalanced solutions, whereas CE implicitly encourages the ground-truth region proportions. Our theoretical results explain the wide experimental evidence in the medical-imaging literature, whereby Dice losses bring improvements for imbalanced segmentation. It also explains why CE dominates natural-image problems with diverse class proportions, in which case Dice might have difficulty adapting to different label-marginal distributions. Based on our theoretical analysis, we propose a principled and simple solution, which enables to control explicitly the label-marginal bias. Our loss integrates CE with explicit ${\cal L}_1$ regularization, which encourages label marginals to match target class proportions, thereby mitigating class imbalance but without losing generality. Comprehensive experiments and ablation studies over different losses and applications validate our theoretical analysis, as well as the effectiveness of our explicit label-marginal regularizers.


翻译:大部分分解损失是跨 Entropy (CE) 或 Dice 损失的变体。 在丰富的分解文献中,对于哪些损失是更好的选择,没有明确的共识,而哪些损失是更好的选择,不同基准和应用程序的每个不同的表现都各不相同。在这项工作中,我们开发了一种理论分析,将这两类损失联系起来,暴露了它们的优缺点。首先,我们提供了一种限制-优化的视角,表明CE和Dice有着比以前想象的更深得多的联系:它们都分解成标签-边际惩罚和密切相关的地平线匹配惩罚。然后,我们提供了一种约束关系和信息-理论分析,揭示了隐蔽的标签-边际偏差偏差偏差的偏差:Dice对具体的极端偏差解决方案有着内在的偏差,而CE 隐含地鼓励了地面偏差区域的比例。 我们的理论结果解释了医学成形文献中的广泛的实验证据,Dice 损失导致偏差的分化。它也解释了为什么CE 将自然-image 问题与不同的等级比,在这个案例中,Dice可能难以适应一个简单的C- recal- liginalalalalalalalalalalalalal laislationalal ex ex ex ex ex ex ex ex laevationalalalalalal laut laut lauts ex lautus lautus ex lautus ex ex lautus ex ex ex laut lade lade lade lautus lax lax lax lax lax lax lax lax lax lax lax lader laut laut lax laut laut laut lader lader laut lax lax lader lad labild ladalalalalalalalalalalalal lad lauts lauts bal lax laut lax lax lauts lax lauts lax lax lax lax lax lax ex

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员