As deep neural networks are more commonly deployed in high-stakes domains, their black-box nature makes uncertainty quantification challenging. We investigate the effects of presenting conformal prediction sets -- a distribution-free class of methods for generating prediction sets with specified coverage -- to express uncertainty in AI-advised decision-making. Through a large online experiment, we compare the utility of conformal prediction sets to displays of Top-$1$ and Top-$k$ predictions for AI-advised image labeling. In a pre-registered analysis, we find that the utility of prediction sets for accuracy varies with the difficulty of the task: while they result in accuracy on par with or less than Top-$1$ and Top-$k$ displays for easy images, prediction sets excel at assisting humans in labeling out-of-distribution (OOD) images, especially when the set size is small. Our results empirically pinpoint practical challenges of conformal prediction sets and provide implications on how to incorporate them for real-world decision-making.
翻译:暂无翻译