In this paper, we present the Circular Accessible Depth (CAD), a robust traversability representation for an unmanned ground vehicle (UGV) to learn traversability in various scenarios containing irregular obstacles. To predict CAD, we propose a neural network, namely CADNet, with an attention-based multi-frame point cloud fusion module, Stability-Attention Module (SAM), to encode the spatial features from point clouds captured by LiDAR. CAD is designed based on the polar coordinate system and focuses on predicting the border of traversable area. Since it encodes the spatial information of the surrounding environment, which enables a semi-supervised learning for the CADNet, and thus desirably avoids annotating a large amount of data. Extensive experiments demonstrate that CAD outperforms baselines in terms of robustness and precision. We also implement our method on a real UGV and show that it performs well in real-world scenarios.
翻译:在本文中,我们介绍了《无障碍深度通报》,这是无人驾驶地面飞行器(UGV)在各种含有不规则障碍的情景中学习可穿越性的一种强有力的跨度代表。为了预测CAD,我们提议建立一个神经网络,即CADNet,其中含有一个基于关注的多框架点云聚云模块,即稳定-注意模块(SAM),以便从LIDAR所捕捉的点云中编码空间特征。CAD基于极地协调系统设计,侧重于预测可穿越区域的边界。由于它编码了周围环境的空间信息,使得CADNet能够进行半监督的学习,从而极有可能避免大量的数据。广泛的实验表明,CAD在坚固和精确性方面超过了基线。我们还在实际的UGV上实施了我们的方法,并表明它在现实世界情景中表现良好。