The computing industry is forced to find alternative design approaches and computing platforms to sustain increased power efficiency, while providing sufficient performance. Among the examined solutions, Approximate Computing, Hardware Acceleration, and Heterogeneous Computing have gained great momentum. In this Dissertation, we introduce design solutions and methodologies, built on top of the preceding computing paradigms, for the development of energy-efficient DSP and AI accelerators. In particular, we adopt the promising paradigm of Approximate Computing and apply new approximation techniques in the design of arithmetic circuits. The proposed arithmetic approximation techniques involve bit-level optimizations, inexact operand encodings, and skipping of computations, while they are applied in both fixed- and floating-point arithmetic. We also conduct an extensive exploration on combinations among the approximation techniques and propose a low-overhead scheme for seamlessly adjusting the approximation degree of our circuits at runtime. Based on our methodology, these arithmetic approximation techniques are then combined with hardware design techniques to implement approximate ASIC- and FPGA-based DSP and AI accelerators. Moreover, we propose methodologies for the efficient mapping of DSP/AI kernels on distinctive embedded devices, i.e., the space-grade FPGAs and the heterogeneous VPUs. On the one hand, we cope with the decreased flexibility of the space-grade technology and the technical challenges that arise in new FPGA tools. On the other hand, we unlock the full potential of heterogeneity by exploiting all the diverse processors and memories. Based on our methodology, we efficiently map computer vision algorithms onto the radiation-hardened NanoXplore's FPGAs and accelerate DSP & CNN kernels on Intel's Myriad VPUs.


翻译:计算机产业被迫寻找替代设计方法和计算平台以维持更高的电力效率,同时提供足够的性能。 在所研究的解决方案中, 近似电子计算、 硬件加速、 异质计算等获得了巨大的动力 。 在本次研究中, 我们还在先前的计算范式之上引入了设计解决方案和方法, 以开发节能的 DSP 和 AI 加速器。 特别是, 我们采用了“ 近似计算” 的有希望的范式, 并在计算电路的设计中应用新的近似技术。 拟议的算术近似技术包括比分级优化、 不精密的操作编码和跳过计算, 而它们同时被用于固定和浮动的计算。 我们还在近似技术的组合上进行了广泛的探索, 并提出了一个低头计划, 以无缝调整我们电路路的近度。 根据我们的方法, 这些算术的近似近似精度技术与硬件的硬件设计技术结合, 以近似的ASIC- 和FA 和AI 加速计算方法。 此外, 我们提议在SGA 系统 上高效的SDA- 系统 、 和SD- FAFDFD 系统 上, 不断 的智能 的系统, 不断, 不断 的系统 的系统 和 和 不断 不断, 的系统 和 不断 不断 不断 不断 系统 系统 。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员