Circuit representation learning is a promising research direction in the electronic design automation (EDA) field. With sufficient data for pre-training, the learned general yet effective representation can help to solve multiple downstream EDA tasks by fine-tuning it on a small set of task-related data. However, existing solutions only target combinational circuits, significantly limiting their applications. In this work, we propose DeepSeq, a novel representation learning framework for sequential netlists. Specifically, we introduce a dedicated graph neural network (GNN) with a customized propagation scheme to exploit the temporal correlations between gates in sequential circuits. To ensure effective learning, we propose to use a multi-task training objective with two sets of strongly related supervision: logic probability and transition probability at each node. A novel dual attention aggregation mechanism is introduced to facilitate learning both tasks efficiently. Experimental results on various benchmark circuits show that DeepSeq outperforms other GNN models for sequential circuit learning. We evaluate the generalization capability of DeepSeq on a downstream power estimation task. After fine-tuning, DeepSeq can accurately estimate power across various circuits under different workloads.


翻译:电路代表制学习是电子设计自动化(EDA)领域一个很有希望的研究方向。有了足够的培训前数据,学习到的一般而有效的代表制可以通过微调与任务有关的一小套数据,帮助解决多个下游的EDA任务。然而,现有的解决方案只针对组合电路,大大限制其应用。在这项工作中,我们建议为顺序网名单建立一个新型的演示学习框架DeepSeq。具体地说,我们引入了一个专用的图形神经网络(GNN),配有一个定制的传播计划,以利用下游电路门之间的时间相关性。为了确保有效的学习,我们提议使用一个多任务培训目标,并配有两套密切相关的监督:逻辑概率和每个节点的过渡概率。引入了一个新的双重关注集成机制,以便利有效地学习这两项任务。各种基准电路的实验结果显示,DeepSeq比其他GNN电路学习的模型更完美。我们评估下游电路估计任务时的DeepSeq总能力。在进行微调后,DepSectionSeq可以准确估计不同电路段下游能力。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
59+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
26+阅读 · 2023年1月12日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
10+阅读 · 2019年1月24日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关论文
Arxiv
26+阅读 · 2023年1月12日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
10+阅读 · 2019年1月24日
Arxiv
11+阅读 · 2018年7月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员