This work contains the mathematical exploration of a few prototypical games in which central concepts from statistics and probability theory naturally emerge. The first two kinds of games are termed Fisher and Bayesian games, which are connected to Frequentist and Bayesian statistics, respectively. Later, a more general type of game is introduced, termed Statistical game, in which a further parameter, the players' relative risk aversion, can be set. In this work, we show that Fisher and Bayesian games can be viewed as limiting cases of Statistical games. Therefore, Statistical games can be viewed as a unified framework, incorporating both Frequentist and Bayesian statistics. Furthermore, a philosophical framework is (re-)presented -- often referred to as minimax regret criterion -- as a general approach to decision making. The main motivation for this work was to embed Bayesian statistics into a broader decision-making framework, where, based on collected data, actions with consequences have to be made, which can be translated to utilities (or rewards/losses) of the decision-maker. The work starts with the simplest possible toy model, related to hypothesis testing and statistical inference. This choice has two main benefits: i.) it allows us to determine (conjecture) the behaviour of the equilibrium strategies in various limiting cases ii.) this way, we can introduce Statistical games without requiring additional stochastic parameters. The work contains game theoretical methods related to two-player, non-cooperative games to determine and prove equilibrium strategies of Fisher, Bayesian and Statistical games. It also relies on analytical tools for derivations concerning various limiting cases.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
26+阅读 · 2019年11月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
18+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
26+阅读 · 2019年11月24日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员