Text generation from semantic parses is to generate textual descriptions for formal representation inputs such as logic forms and SQL queries. This is challenging due to two reasons: (1) the complex and intensive inner logic with the data scarcity constraint, (2) the lack of automatic evaluation metrics for logic consistency. To address these two challenges, this paper first proposes SNOWBALL, a framework for logic consistent text generation from semantic parses that employs an iterative training procedure by recursively augmenting the training set with quality control. Second, we propose a novel automatic metric, BLEC, for evaluating the logical consistency between the semantic parses and generated texts. The experimental results on two benchmark datasets, Logic2Text and Spider, demonstrate the SNOWBALL framework enhances the logic consistency on both BLEC and human evaluation. Furthermore, our statistical analysis reveals that BLEC is more logically consistent with human evaluation than general-purpose automatic metrics including BLEU, ROUGE and, BLEURT. Our data and code are available at https://github.com/Ciaranshu/relogic.
翻译:从语义分析中生成的文字是为了对正式代表投入,如逻辑格式和SQL查询产生文字描述。这具有挑战性,原因有二:(1) 缺乏数据制约的复杂而密集的内部逻辑,(2) 缺乏逻辑一致性的自动评价指标。为了应对这两项挑战,本文件首先提议SNOWBALL,这是从语义分析中生成逻辑一致文本的框架,这种语言利用迭代培训程序,在质量控制下反复增加培训。第二,我们提出一个新的自动指标,即LUC,用于评价语义分析与生成文本之间的逻辑一致性。两个基准数据集(logic2Text和蜘蛛)的实验结果显示SNOWBALL框架加强了对BLBC和人类评估的逻辑一致性。此外,我们的统计分析显示,LOBC比通用自动计量(包括BLEU、ROUGE和BLEURT)更符合逻辑。我们的数据和代码可在https://github.com/Cianshu/relogic查阅。