This work deals with a practical everyday problem: stable object placement on flat surfaces starting from unknown initial poses. Common object-placing approaches require either complete scene specifications or extrinsic sensor measurements, e.g., cameras, that occasionally suffer from occlusions. We propose a novel approach for stable object placing that combines tactile feedback and proprioceptive sensing. We devise a neural architecture that estimates a rotation matrix, resulting in a corrective gripper movement that aligns the object with the placing surface for the subsequent object manipulation. We compare models with different sensing modalities, such as force-torque and an external motion capture system, in real-world object placing tasks with different objects. The experimental evaluation of our placing policies with a set of unseen everyday objects reveals significant generalization of our proposed pipeline, suggesting that tactile sensing plays a vital role in the intrinsic understanding of robotic dexterous object manipulation. Code, models, and supplementary videos are available at https://sites.google.com/view/placing-by-touching.
翻译:本文研究了一个实际的日常问题:从未知的初始姿态开始,在平坦的表面上实现稳定的物品放置。常见的物品放置方法要么需要完整的场景描述,要么需要外部传感器测量,例如偶尔会受到遮挡的摄像机。我们提出了一种新的稳定物品放置方法,它将触觉反馈和本体感觉相结合。我们设计了一种神经结构,估算出一个旋转矩阵,导致夹持器进行纠正性移动,使物品与放置表面对齐,以便进行后续的物品操作。我们比较了具有不同传感模式的模型,例如力矩和外部运动捕捉系统,在带有不同物品的实际物品放置任务中进行了实验评估。对一组未知的日常物品使用我们的放置策略进行实验评估,显示出我们所提出的管道的显著泛化,提示触觉传感在机器人灵巧物品操作的内在理解中发挥了重要作用。代码、模型和补充视频可在 https://sites.google.com/view/placing-by-touching 上找到。