This paper provides a general framework for testing instrument validity in heterogeneous causal effect models. The generalization includes the cases where the treatment can be multivalued (and ordered) or unordered. Based on a series of testable implications, we propose a nonparametric test which is proved to be asymptotically size controlled and consistent. Because of the nonstandard nature of the problem in question, the test statistic is constructed based on a nonsmooth map, which causes technical complications. We provide an extended continuous mapping theorem and an extended delta method, which may be of independent interest, to establish the asymptotic distribution of the test statistic under null. We then extend the bootstrap method proposed by Fang and Santos (2018) to approximate this asymptotic distribution and construct a critical value for the test. Compared to the tests in the literature, our test can be applied in more general settings and may achieve power improvement. Evidence that the test performs well on finite samples is provided via simulations. We revisit the empirical study of Card (1993) and use their data to demonstrate application of the proposed test in practice. We show that a valid instrument for a multivalued treatment may not remain valid if the treatment is coarsened.
翻译:本文为各种因果效应模型的测试仪器有效性提供了一个总体框架。 一般性分析包括治疗可以多值( 和订购)或无顺序排列的案例。 基于一系列可测试的影响, 我们提议非参数测试, 其大小被证明是非现成的控制和一致的。 由于有关问题的不标准性质, 测试统计是根据非光谱图构建的, 造成技术并发症的。 我们提供一种延长的连续连续绘图定理和扩展的三角形方法, 这可能具有独立的兴趣, 以确定无效测试统计的无症状分布。 我们然后扩大Fang 和 Santos (2018年) 提议的靴套方法, 以接近这一无现成分布, 并为测试构建一个关键值。 与文献中的测试相比, 我们的测试可以在更一般的环境中应用, 并可能实现权力的改善。 测试在有限的样品上表现良好的证据是通过模拟提供的。 我们重新审视卡德的经验研究 (1993年), 并使用它们的数据来证明拟议试验的实际应用。 我们证明, 多价处理的有效工具如果不是有效的, 则仍然有效。