Federated learning of causal estimands may greatly improve estimation efficiency by aggregating estimates from multiple study sites, but robustness to extreme estimates is vital for maintaining consistency. We develop a federated adaptive causal estimation (FACE) framework to incorporate heterogeneous data from multiple sites to provide treatment effect estimation and inference for a target population of interest. Our strategy is communication-efficient and privacy-preserving and allows for flexibility in the specification of the target population. Our method accounts for site-level heterogeneity in the distribution of covariates through density ratio weighting. To safely aggregate estimates from all sites and avoid negative transfer, we introduce an adaptive procedure of weighing the estimators constructed using data from the target and source populations through a penalized regression on the influence functions, which achieves 1) consistency and 2) optimal efficiency. We illustrate FACE by conducting a comparative effectiveness study of BNT162b2 (Pfizer) and mRNA-1273 (Moderna) vaccines on COVID-19 outcomes in U.S. veterans using electronic health records from five VA sites.
翻译:对因果估计值的联邦学习可能通过将多个研究地点的估计数汇总而大大提高估计效率,但稳健性和极端估计对于保持一致性至关重要。我们制定了一个联合适应性因果估计框架,以纳入多个地点的多种数据,为感兴趣的目标人群提供治疗效果估计和推断。我们的战略是通信效率和隐私保护,并允许在目标人群的规格上具有灵活性。我们的方法说明了通过密度比重加权分配共产值的现场水平差异性。为了安全地从所有地点进行综合估计并避免负转移,我们采用了一种适应性程序,通过对影响功能进行惩罚性回归,权衡利用目标人群和源人群的数据而构建的估算器,从而实现(1) 一致性和(2) 最佳效率。我们用5个VA地点的电子健康记录,对美国退伍军人COVID-19结果的BNT162b(Pfizer)和MRNA-1273(Moderna)疫苗进行了比较有效性研究,以此来说明FACE。