Federated learning of causal estimands may greatly improve estimation efficiency by aggregating estimates from multiple study sites, but robustness to extreme estimates is vital for maintaining consistency. We develop a federated adaptive causal estimation (FACE) framework to incorporate heterogeneous data from multiple sites to provide treatment effect estimation and inference for a target population of interest. Our strategy is communication-efficient and privacy-preserving and allows for flexibility in the specification of the target population. Our method accounts for site-level heterogeneity in the distribution of covariates through density ratio weighting. To safely aggregate estimates from all sites and avoid negative transfer, we introduce an adaptive procedure of weighing the estimators constructed using data from the target and source populations through a penalized regression on the influence functions, which achieves 1) consistency and 2) optimal efficiency. We illustrate FACE by conducting a comparative effectiveness study of BNT162b2 (Pfizer) and mRNA-1273 (Moderna) vaccines on COVID-19 outcomes in U.S. veterans using electronic health records from five VA sites.


翻译:对因果估计值的联邦学习可能通过将多个研究地点的估计数汇总而大大提高估计效率,但稳健性和极端估计对于保持一致性至关重要。我们制定了一个联合适应性因果估计框架,以纳入多个地点的多种数据,为感兴趣的目标人群提供治疗效果估计和推断。我们的战略是通信效率和隐私保护,并允许在目标人群的规格上具有灵活性。我们的方法说明了通过密度比重加权分配共产值的现场水平差异性。为了安全地从所有地点进行综合估计并避免负转移,我们采用了一种适应性程序,通过对影响功能进行惩罚性回归,权衡利用目标人群和源人群的数据而构建的估算器,从而实现(1) 一致性和(2) 最佳效率。我们用5个VA地点的电子健康记录,对美国退伍军人COVID-19结果的BNT162b(Pfizer)和MRNA-1273(Moderna)疫苗进行了比较有效性研究,以此来说明FACE。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年8月13日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
已删除
将门创投
12+阅读 · 2019年7月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机类 | APNOMS 2019等国际会议信息6条
Call4Papers
4+阅读 · 2019年4月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
On Variance Estimation of Random Forests
Arxiv
0+阅读 · 2022年2月18日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
已删除
将门创投
12+阅读 · 2019年7月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机类 | APNOMS 2019等国际会议信息6条
Call4Papers
4+阅读 · 2019年4月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员