Co-speech gestures are fundamental for communication. The advent of recent deep learning techniques has facilitated the creation of lifelike, synchronous co-speech gestures for Embodied Conversational Agents. "In-the-wild" datasets, aggregating video content from platforms like YouTube via human pose detection technologies, provide a feasible solution by offering 2D skeletal sequences aligned with speech. Concurrent developments in lifting models enable the conversion of these 2D sequences into 3D gesture databases. However, it is important to note that the 3D poses estimated from the 2D extracted poses are, in essence, approximations of the ground-truth, which remains in the 2D domain. This distinction raises questions about the impact of gesture representation dimensionality on the quality of generated motions - a topic that, to our knowledge, remains largely unexplored. Our study examines the effect of using either 2D or 3D joint coordinates as training data on the performance of speech-to-gesture deep generative models. We employ a lifting model for converting generated 2D pose sequences into 3D and assess how gestures created directly in 3D stack up against those initially generated in 2D and then converted to 3D. We perform an objective evaluation using widely used metrics in the gesture generation field as well as a user study to qualitatively evaluate the different approaches.
翻译:暂无翻译