Dynamic treatment regime (DTR) plays a critical role in precision medicine when assigning patient-specific treatments at multiple stages and optimizing a long term clinical outcome. However, most of existing work about DTRs have been focused on categorical treatment scenarios, instead of continuous treatment options. Also, the performances of regular black-box machine learning methods and regular tree learning methods are lack of interpretability and global optimality respectively. In this paper, we propose a non-greedy global optimization method for dose search, namely Global Optimal Dosage Tree-based learning method (GoDoTree), which combines a robust estimation of the counterfactual outcome mean with an interpretable and non-greedy decision tree for estimating the global optimal dynamic dosage treatment regime in a multiple-stage setting. GoDoTree-Learning recursively estimates how the counterfactual outcome mean depends on a continuous treatment dosage using doubly robust estimators at each stage, and optimizes the stage-specific decision tree in a non-greedy way. We conduct simulation studies to evaluate the finite sample performance of the proposed method and apply it to a real data application for optimal warfarin dose finding.
翻译:动态治疗制度(DTR)在指定多个阶段的特定患者治疗和优化长期临床成果时,在精确医学中发挥着关键作用,在指定多个阶段的患者特定治疗和优化长期临床成果时,动态治疗制度(DTR)在精确医学中发挥着关键作用,然而,关于DTR的现有工作大部分侧重于绝对治疗方案,而不是连续治疗方案;此外,常规黑盒机器学习方法和定期树学习方法的绩效分别缺乏可解释性和全球最佳性;在本文件中,我们建议采用一种非微小的全球剂量搜索方法,即全球最佳 dosage树基学习方法(GoDoTreere),该方法把对反现实结果平均值的可靠估计与可解释的、非微小的决定树结合起来,以便在多阶段环境中估计全球最佳的动态剂量治疗制度。GoDoTreLear 反复估计反现实结果意味着如何依赖持续治疗剂量,在每个阶段使用强力的估算器,并以非微度方式优化特定阶段决策树。我们进行模拟研究,以评价拟议方法的有限抽样性表现,并将它应用到真正的战争剂量。