To improve precision of estimation and power of testing hypothesis for an unconditional treatment effect in randomized clinical trials with binary outcomes, researchers and regulatory agencies recommend using g-computation as a reliable method of covariate adjustment. However, the practical application of g-computation is hindered by the lack of an explicit robust variance formula that can be used for different unconditional treatment effects of interest. To fill this gap, we provide explicit and robust variance estimators for g-computation estimators and demonstrate through simulations that the variance estimators can be reliably applied in practice.
翻译:为了提高随机临床试验中具有二元结果的无条件治疗效应的估计精度和假设检验的功效,研究人员和监管机构建议使用g- 计算作为可靠的协变量调整方法。但是,g- 计算的实际应用受到缺乏可用于感兴趣的不同无条件治疗效应的明确健壮方差公式的影响。为了填补这一空白,我们提供了g- 计算估计量的明确和健壮的方差估计量,并通过模拟证明方差估计量在实践中可以可靠地应用。