Most existing methods that cope with noisy labels usually assume that the class distributions are well balanced, which has insufficient capacity to deal with the practical scenarios where training samples have imbalanced distributions. To this end, this paper makes an early effort to tackle the image classification task with both long-tailed distribution and label noise. Existing noise-robust learning methods cannot work in this scenario as it is challenging to differentiate noisy samples from clean samples of tail classes. To deal with this problem, we propose a new learning paradigm based on matching between inferences on weak and strong data augmentations to screen out noisy samples and introduce a leave-noise-out regularization to eliminate the effect of the recognized noisy samples. Furthermore, we incorporate a novel prediction penalty based on online prior distribution to avoid bias towards head classes. This mechanism has superiority in capturing the class fitting degree in realtime compared to the existing long-tail classification methods. Exhaustive experiments demonstrate that the proposed method outperforms state-of-the-art algorithms that address the distribution imbalance problem in long-tailed classification under noisy labels.
翻译:应对吵闹标签的大多数现有方法通常假定班级分配非常均衡,这不足以应对培训样品分布不平衡的实际情景。 为此,本文件以长尾分发和标签噪音为目的,及早努力处理图像分类任务; 现有噪音-紫色学习方法无法在这种假设中发挥作用,因为将吵闹样品与干净的尾品分类样本区分开来具有挑战性。 解决这个问题,我们提出一种新的学习模式,将薄弱和强力数据增强的推论相匹配,以筛选吵闹样品,并采用离子传出正规化办法消除公认的噪音样品的效果。 此外,我们纳入了基于在线分发的新的预告处罚,以避免偏向头类。这一机制在实时获取班级适当程度比现有的长尾类分类方法更强。 Exhaustive实验表明,拟议的方法超越了在噪音标签下长期分类中解决分配不平衡问题的最新算法。