In this paper, we consider a multi-stage dynamic assortment optimization problem with multi-nomial choice modeling (MNL) under resource knapsack constraints. Given the current resource inventory levels, the retailer makes an assortment decision at each period, and the goal of the retailer is to maximize the total profit from purchases. With the exact optimal dynamic assortment solution being computationally intractable, a practical strategy is to adopt the re-solving technique that periodically re-optimizes deterministic linear programs (LP) arising from fluid approximation. However, the fractional structure of MNL makes the fluid approximation in assortment optimization highly non-linear, which brings new technical challenges. To address this challenge, we propose a new epoch-based re-solving algorithm that effectively transforms the denominator of the objective into the constraint. Theoretically, we prove that the regret (i.e., the gap between the resolving policy and the optimal objective of the fluid approximation) scales logarithmically with the length of time horizon and resource capacities.
翻译:暂无翻译