Conformer has achieved impressive results in Automatic Speech Recognition (ASR) by leveraging transformer's capturing of content-based global interactions and convolutional neural network's exploiting of local features. In Conformer, two macaron-like feed-forward layers with half-step residual connections sandwich the multi-head self-attention and convolution modules followed by a post layer normalization. We improve Conformer's long-sequence representation ability in two directions, \emph{sparser} and \emph{deeper}. We adapt a sparse self-attention mechanism with $\mathcal{O}(L\text{log}L)$ in time complexity and memory usage. A deep normalization strategy is utilized when performing residual connections to ensure our training of hundred-level Conformer blocks. On the Japanese CSJ-500h dataset, this deep sparse Conformer achieves respectively CERs of 5.52\%, 4.03\% and 4.50\% on the three evaluation sets and 4.16\%, 2.84\% and 3.20\% when ensembling five deep sparse Conformer variants from 12 to 16, 17, 50, and finally 100 encoder layers.


翻译:通过利用变压器捕捉基于内容的全球互动和进化神经网络利用当地特点,自动语音识别取得了令人印象深刻的成果。在变压器中,两层马卡龙式的进化向前层,配有半阶段剩余连接,配有多头自留和进化模块,后加一层正常化。我们提高了变压器在两个方向,即\emph{sparser} 和\emph{diter}的长期序列代表能力。我们用时间复杂性和记忆用美元调整一个稀少的自留机制(L\text{log}L),在进行剩余连接时使用了一种深度的正常化战略,以确保我们培训100级的组合块。在日本的CSJ-500h数据集中,这种深度稀薄的组合在三个评价组和4.16{O}、2.84}和3.20之间分别实现了5.52 ⁇ 、4.03 ⁇ 和4.50的核证的排减量。当将五种深度分散的变式从12至16级、17级、50级和50级。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月14日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员